Arithmetic differential invariants of dynamical systems

Alexandru Buium
Department of Mathematics and Statistics
University of New Mexico buium@math.unm.edu

January 31, 2012

Dynamical systems

X, \tilde{X} non-singular algebraic varieties over \mathbb{C}

Dynamical systems

X, \tilde{X} non-singular algebraic varieties over \mathbb{C}
$\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ dominant morphisms, $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ correspondece.

Dynamical systems

X, \tilde{X} non-singular algebraic varieties over \mathbb{C}
$\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ dominant morphisms, $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ correspondece.
Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \rightarrow X$

Dynamical systems

X, \tilde{X} non-singular algebraic varieties over \mathbb{C}
$\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ dominant morphisms, $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ correspondece.
Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \rightarrow X$
View (X, σ) as a (generalized) dynamical system

Dynamical systems

X, \tilde{X} non-singular algebraic varieties over \mathbb{C}
$\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ dominant morphisms, $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ correspondece.
Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \rightarrow X$
View (X, σ) as a (generalized) dynamical system
Orbit of $x \in X$ under σ is the set

Dynamical systems

X, \tilde{X} non-singular algebraic varieties over \mathbb{C}
$\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ dominant morphisms, $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ correspondece.
Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \rightarrow X$
View (X, σ) as a (generalized) dynamical system
Orbit of $x \in X$ under σ is the set
$\left\{x^{\prime} \in X\right.$; there exist $\left.x_{1}, \ldots, x_{n} \in X, x_{1}=x, x_{n}=x^{\prime}, \sigma_{1}\left(x_{i}\right)=\sigma_{2}\left(x_{i-1}\right)\right\}$

Dynamical systems

X, \tilde{X} non-singular algebraic varieties over \mathbb{C}
$\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ dominant morphisms, $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ correspondece.
Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \rightarrow X$
View (X, σ) as a (generalized) dynamical system
Orbit of $x \in X$ under σ is the set
$\left\{x^{\prime} \in X\right.$; there exist $\left.x_{1}, \ldots, x_{n} \in X, x_{1}=x, x_{n}=x^{\prime}, \sigma_{1}\left(x_{i}\right)=\sigma_{2}\left(x_{i-1}\right)\right\}$
Most of the times there is a Zariski dense orbit

Basic pathology

Basic pathology

(X, σ) correspondence

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants
If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma}=\mathbb{C}$

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants
If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma}=\mathbb{C}$
More generally: L line bundle on $X, \beta: \sigma_{1}^{*} L \simeq \sigma_{2}^{*} L$

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants
If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma}=\mathbb{C}$
More generally: L line bundle on $X, \beta: \sigma_{1}^{*} L \simeq \sigma_{2}^{*} L$
$R(X, L)=\bigoplus_{0 \neq m \in \mathbb{Z}_{+}} H^{0}\left(X, L^{m}\right)$

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants
If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma}=\mathbb{C}$
More generally: L line bundle on $X, \beta: \sigma_{1}^{*} L \simeq \sigma_{2}^{*} L$
$R(X, L)=\bigoplus_{0 \neq m \in \mathbb{Z}_{+}} H^{0}\left(X, L^{m}\right)$
$R(X, L)^{\sigma}=\left\{s \in R(X, L) ; \beta \sigma_{1}^{*} s=\sigma_{2}^{*} s\right\}$ graded ring of invariants

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants
If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma}=\mathbb{C}$
More generally: L line bundle on $X, \beta: \sigma_{1}^{*} L \simeq \sigma_{2}^{*} L$
$R(X, L)=\bigoplus_{0 \neq m \in \mathbb{Z}_{+}} H^{0}\left(X, L^{m}\right)$
$R(X, L)^{\sigma}=\left\{s \in R(X, L) ; \beta \sigma_{1}^{*} s=\sigma_{2}^{*} s\right\}$ graded ring of invariants
$R(X, L)_{(0)}^{\sigma}=\left\{f / g ; f, g \in R(X, L)^{h}, \operatorname{deg}(f)=\operatorname{deg}(g)\right\}$, field of invariants

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants
If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma}=\mathbb{C}$
More generally: L line bundle on $X, \beta: \sigma_{1}^{*} L \simeq \sigma_{2}^{*} L$
$R(X, L)=\bigoplus_{0 \neq m \in \mathbb{Z}_{+}} H^{0}\left(X, L^{m}\right)$
$R(X, L)^{\sigma}=\left\{s \in R(X, L) ; \beta \sigma_{1}^{*} s=\sigma_{2}^{*} s\right\}$ graded ring of invariants
$R(X, L)_{(0)}^{\sigma}=\left\{f / g ; f, g \in R(X, L)^{h}, \operatorname{deg}(f)=\operatorname{deg}(g)\right\}$, field of invariants
If σ has an infinite orbit then $R(X, L)_{(0)}^{\sigma}=\mathbb{C}$

Basic pathology

(X, σ) correspondence
Define $\mathcal{O}(X)^{\sigma}=\left\{f \in \mathcal{O}(X) ; f \circ \sigma_{1}=f \circ \sigma_{2}\right\}$ ring of invariants
If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma}=\mathbb{C}$
More generally: L line bundle on $X, \beta: \sigma_{1}^{*} L \simeq \sigma_{2}^{*} L$
$R(X, L)=\bigoplus_{0 \neq m \in \mathbb{Z}_{+}} H^{0}\left(X, L^{m}\right)$
$R(X, L)^{\sigma}=\left\{s \in R(X, L) ; \beta \sigma_{1}^{*} s=\sigma_{2}^{*} s\right\}$ graded ring of invariants
$R(X, L)_{(0)}^{\sigma}=\left\{f / g ; f, g \in R(X, L)^{h}, \operatorname{deg}(f)=\operatorname{deg}(g)\right\}$, field of invariants
If σ has an infinite orbit then $R(X, L)_{(0)}^{\sigma}=\mathbb{C}$
NO INVARIANTS IN ALGEBRAIC GEOMETRY

What to do ?

What to do ?

Nothing

What to do ?

Nothing
OR

What to do ?

Nothing
OR
Search for new geometries where we have invariants

Strategy

Strategy

Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Strategy
Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants

Strategy
Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants
Geometry with δ-functions called δ-geometry

Strategy
Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants
Geometry with δ-functions called δ-geometry
Passing to δ-functions is analogous to

Strategy
Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants
Geometry with δ-functions called δ-geometry
Passing to δ-functions is analogous to passing from functions $\mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto f(x)$

Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants
Geometry with δ-functions called δ-geometry
Passing to δ-functions is analogous to
passing from functions $\mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto f(x)$
to differential functions (Lagrangians)

Strategy

Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants
Geometry with δ-functions called δ-geometry
Passing to δ-functions is analogous to
passing from functions $\mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto f(x)$
to differential functions (Lagrangians)

$$
C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad x(t) \mapsto f\left(x(t), x^{\prime}(t), \ldots, x^{(n)}(t)\right)
$$

Strategy

Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants
Geometry with δ-functions called δ-geometry
Passing to δ-functions is analogous to
passing from functions $\mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto f(x)$
to differential functions (Lagrangians)
$C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad x(t) \mapsto f\left(x(t), x^{\prime}(t), \ldots, x^{(n)}(t)\right)$
In physics: no invariant functions on space-time under the symmetries of space-time but one has invariant Lagrangians; the same will happen in δ-geometry

Strategy

Pass from the polynomial functions of algebraic geometry to more general functions called δ-functions

Hope: more functions \Rightarrow more invariants
Geometry with δ-functions called δ-geometry
Passing to δ-functions is analogous to
passing from functions $\mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto f(x)$
to differential functions (Lagrangians)
$C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad x(t) \mapsto f\left(x(t), x^{\prime}(t), \ldots, x^{(n)}(t)\right)$
In physics: no invariant functions on space-time under the symmetries of space-time but one has invariant Lagrangians; the same will happen in δ-geometry

Want to apply δ-geometry to arithmetic geometry; but there are no derivations on \mathbb{Z}; what to do?

The Fermat quotient δ

The Fermat quotient δ
Define $R=W\left(\overline{\mathbb{F}}_{p}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}$

The Fermat quotient δ

Define $R=W\left(\overline{\mathbb{F}}_{p}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}$
where upperscript ${ }^{\wedge}$ means p-adic completion

The Fermat quotient δ

Define $R=W\left(\overline{\mathbb{F}}_{p}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}$
where upperscript ^ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$

$$
\text { The Fermat quotient } \delta
$$

Define $R=W\left(\overline{\mathbb{F}}_{p}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}$
where upperscript ${ }^{\wedge}$ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator

The Fermat quotient δ
Define $R=W\left(\overline{\mathbb{F}}_{p}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}$
where upperscript ${ }^{\wedge}$ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator
Morally R is the analogue of $C^{\infty}(\mathbb{R})=\{x=x(t)$ smooth, $x: \mathbb{R} \rightarrow \mathbb{R}\}$

The Fermat quotient δ
Define $R=W\left(\overline{\mathbb{F}}_{p}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}$
where upperscript ^ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator
Morally R is the analogue of $C^{\infty}(\mathbb{R})=\{x=x(t)$ smooth, $x: \mathbb{R} \rightarrow \mathbb{R}\}$
Morally $\delta=" \frac{d}{d p} "$ is the analogue of $\frac{d}{d t}$

The Fermat quotient δ
Define $R=W\left(\overline{\mathbb{F}}_{p}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}$
where upperscript ${ }^{\wedge}$ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator
Morally R is the analogue of $C^{\infty}(\mathbb{R})=\{x=x(t)$ smooth, $x: \mathbb{R} \rightarrow \mathbb{R}\}$
Morally $\delta=$ " $\frac{d}{d p}$ " is the analogue of $\frac{d}{d t}$
Example: $p=7 ; \delta 5=" \frac{d 5}{d 7}{ }^{\prime \prime}=\frac{5-5^{7}}{7}$
δ-functions
δ-functions
For X smooth scheme over R
δ-functions
For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

$$
\delta \text {-functions }
$$

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$

$$
\delta \text {-functions }
$$

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{n}$

$$
\delta \text {-functions }
$$

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{n}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(r)}\right]^{\wedge}$ such that

$$
\delta \text {-functions }
$$

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{n}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(r)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{r} x\right), \quad x \in U(R) \subset R^{n}$

$$
\delta \text {-functions }
$$

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{n}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(r)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{r} x\right), \quad x \in U(R) \subset R^{n}$

Denote $\mathcal{O}^{r}(X)$ ring of δ-functions of order r

δ-functions

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{n}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(r)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{r} x\right), \quad x \in U(R) \subset R^{n}$

Denote $\mathcal{O}^{r}(X)$ ring of δ-functions of order r
Note: $U \mapsto \mathcal{O}^{r}(U)$ sheaf \mathcal{O}^{r} on X for the Zariski topology

$$
\delta \text {-functions }
$$

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{n}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(r)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{r} x\right), \quad x \in U(R) \subset R^{n}$

Denote $\mathcal{O}^{r}(X)$ ring of δ-functions of order r
Note: $U \mapsto \mathcal{O}^{r}(U)$ sheaf \mathcal{O}^{r} on X for the Zariski topology
δ-functions are arithmetic analogues of differential functions (Lagrangians)
δ-functions
For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{n}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(r)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{r} x\right), \quad x \in U(R) \subset R^{n}$
Denote $\mathcal{O}^{r}(X)$ ring of δ-functions of order r
Note: $U \mapsto \mathcal{O}^{r}(U)$ sheaf \mathcal{O}^{r} on X for the Zariski topology
δ-functions are arithmetic analogues of differential functions (Lagrangians)
Example $f: \mathbb{A}^{1}(R)=R \rightarrow R, f(x)=\sum_{n \geq 1} p^{n} x^{n}(\delta x)^{n^{3}}\left(\delta^{2} x\right)^{n^{n}}, \delta$-function of order 2

$$
\delta \text {-line bundles }
$$

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$
For $w=\sum a_{i} \phi^{i} \in W, f \in \mathcal{O}^{r}(X)^{\times}$set $f^{w}=\prod\left(\phi^{i}(f)\right)^{a_{i}}$.

$$
\delta \text {-line bundles }
$$

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$
For $w=\sum a_{i} \phi^{i} \in W, f \in \mathcal{O}^{r}(X)^{\times}$set $f^{w}=\prod\left(\phi^{i}(f)\right)^{a_{i}}$.
For L line bundle on X defined by cocycle ($f_{i j}$) define δ-line bundle L^{w} by cocycle ($f_{i j}^{w}$)

$$
\delta \text {-line bundles }
$$

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$
For $w=\sum a_{i} \phi^{i} \in W, f \in \mathcal{O}^{r}(X)^{\times}$set $f^{w}=\prod\left(\phi^{i}(f)\right)^{a_{i}}$.
For L line bundle on X defined by cocycle ($f_{i j}$) define δ-line bundle L^{w} by cocycle ($f_{i j}^{w}$)

For $\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ etale between smooth schemes over R

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$
For $w=\sum a_{i} \phi^{i} \in W, f \in \mathcal{O}^{r}(X)^{\times}$set $f^{w}=\prod\left(\phi^{i}(f)\right)^{a_{i}}$.
For L line bundle on X defined by cocycle ($f_{i j}$) define δ-line bundle L^{w} by cocycle ($f_{i j}^{w}$)

For $\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ etale between smooth schemes over R
$R_{\delta}(X, L)=\bigoplus_{0 \neq m \in W_{+}} H^{0}\left(X, L^{w}\right)$

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$
For $w=\sum a_{i} \phi^{i} \in W, f \in \mathcal{O}^{r}(X)^{\times}$set $f^{w}=\prod\left(\phi^{i}(f)\right)^{a_{i}}$.
For L line bundle on X defined by cocycle ($f_{i j}$) define δ-line bundle L^{ω} by cocycle ($f_{i j}^{w}$)

For $\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ etale between smooth schemes over R
$R_{\delta}(X, L)=\bigoplus_{0 \neq m \in W_{+}} H^{0}\left(X, L^{w}\right)$
$R_{\delta}(X, L)^{\sigma}=\left\{s \in R_{\delta}(X, L) ; \beta \sigma_{1}^{*} s=\sigma_{2}^{*} s\right\}$ graded ring of δ-invariants

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$
For $w=\sum a_{i} \phi^{i} \in W, f \in \mathcal{O}^{r}(X)^{\times}$set $f^{w}=\prod\left(\phi^{i}(f)\right)^{a_{i}}$.
For L line bundle on X defined by cocycle ($f_{i j}$) define δ-line bundle L^{w} by cocycle ($f_{i j}^{w}$)

For $\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ etale between smooth schemes over R
$R_{\delta}(X, L)=\bigoplus_{0 \neq m \in W_{+}} H^{0}\left(X, L^{w}\right)$
$R_{\delta}(X, L)^{\sigma}=\left\{s \in R_{\delta}(X, L) ; \beta \sigma_{1}^{*} s=\sigma_{2}^{*} s\right\}$ graded ring of δ-invariants
$R_{\delta}(X, L)_{(0)}^{\sigma}=\left\{f / g ; f, g \in R_{\delta}(X, L)^{h}, p \nmid g, \operatorname{deg}(f)=\operatorname{deg}(g)\right\}, \delta$-DVR of δ-invariants (δ acts on this)

δ-line bundles

Define δ-line bundle on X as a locally free sheaf of \mathcal{O}^{r}-modules of rank 1
Define $W=\mathbb{Z}[\phi]=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}\right\}$
Define $W_{+}=\left\{\sum a_{i} \phi^{i} ; a_{i} \in \mathbb{Z}_{+}\right\}$
For $w=\sum a_{i} \phi^{i} \in W, f \in \mathcal{O}^{r}(X)^{\times}$set $f^{w}=\prod\left(\phi^{i}(f)\right)^{a_{i}}$.
For L line bundle on X defined by cocycle ($f_{i j}$) define δ-line bundle L^{w} by cocycle ($f_{i j}^{w}$)

For $\sigma_{1}, \sigma_{2}: \tilde{X} \rightarrow X$ etale between smooth schemes over R
$R_{\delta}(X, L)=\bigoplus_{0 \neq m \in W_{+}} H^{0}\left(X, L^{w}\right)$
$R_{\delta}(X, L)^{\sigma}=\left\{s \in R_{\delta}(X, L) ; \beta \sigma_{1}^{*} s=\sigma_{2}^{*} s\right\}$ graded ring of δ-invariants
$R_{\delta}(X, L)_{(0)}^{\sigma}=\left\{f / g ; f, g \in R_{\delta}(X, L)^{h}, p \nmid g, \operatorname{deg}(f)=\operatorname{deg}(g)\right\}, \delta$-DVR of δ-invariants (δ acts on this)
Basic Example $L=K^{-1}$, anticanonical bundle

Main result

Main result

Theorem

Main result

Theorem
The ring $R_{\delta}\left(X, K^{-1}\right)^{\sigma}$ is " δ-birationally equivalent" to the ring $R_{\delta}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$ if the correspondence σ on X "comes from" one of the following cases:

Main result

Theorem
The ring $R_{\delta}\left(X, K^{-1}\right)^{\sigma}$ is " δ-birationally equivalent" to the ring $R_{\delta}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$ if the correspondence σ on X "comes from" one of the following cases:

1) (spherical case) The standard action of $S L_{2}\left(\mathbb{Z}_{p}\right)$ on \mathbb{P}^{1}.

Main result

Theorem

The ring $R_{\delta}\left(X, K^{-1}\right)^{\sigma}$ is " δ-birationally equivalent" to the ring $R_{\delta}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$ if the correspondence σ on X "comes from" one of the following cases:

1) (spherical case) The standard action of $S L_{2}\left(\mathbb{Z}_{p}\right)$ on \mathbb{P}^{1}.
2) (flat case) A dynamical system $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ which is post-critically finite with (orbifold) Euler characteristic zero.

Main result

Theorem
The ring $R_{\delta}\left(X, K^{-1}\right)^{\sigma}$ is " δ-birationally equivalent" to the ring $R_{\delta}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$ if the correspondence σ on X "comes from" one of the following cases:

1) (spherical case) The standard action of $S L_{2}\left(\mathbb{Z}_{p}\right)$ on \mathbb{P}^{1}.
2) (flat case) A dynamical system $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ which is post-critically finite with (orbifold) Euler characteristic zero.
3) (hyperbolic case) The action of a Hecke correspondence on a modular (or Shimura) curve.

Morally

Morally

In all these cases the categorical quotient X / σ is a "rational variety in δ-geometry"

Explanations

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

By σ "comes from" an endomorphism of X we mean that ("up to some specific finite subschemes") \tilde{X} is the graph of the endomorphism.

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

By σ "comes from" an endomorphism of X we mean that ("up to some specific finite subschemes") \tilde{X} is the graph of the endomorphism.
δ-birational equivalence means isomorphism (compatible with the actions of δ) between the p-adic completions of the rings $R_{\delta}\left(X, K^{-1}\right)_{(0)}^{\sigma}$ and $R_{\delta}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)_{(0)}$.

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

By σ "comes from" an endomorphism of X we mean that ("up to some specific finite subschemes") \tilde{X} is the graph of the endomorphism.
δ-birational equivalence means isomorphism (compatible with the actions of δ) between the p-adic completions of the rings $R_{\delta}\left(X, K^{-1}\right)_{(0)}^{\sigma}$ and $R_{\delta}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)_{(0)}$. post-critically finite with (orbifold) Euler characteristic zero is essentially equivalent to f multiplicative $\left(f(x)=x^{N}\right)$, Chebyshev, or Lattèes (i.e. induced from an endomorphism of an elliptic curve)

Converse result

Converse result
Theorem

Converse result

Theorem
Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be defined over a number field and assume for $p \gg 0$ the correspondence (X, σ) obtained from the graph of f satisfies $R_{\delta}\left(X, K^{-1}\right)_{(0)}^{\sigma} \neq R$. Then f is post critically finite with (orb) Euler characteristic zero.

Proofs

Proofs

1) Construct δ-invariants

Proofs

1) Construct δ-invariants

Spherical case: elementary

Proofs

1) Construct δ-invariants

Spherical case: elementary
Flat case: δ-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

Proofs

1) Construct δ-invariants

Spherical case: elementary
Flat case: δ-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)
Hyperbolic case: δ-modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)

Proofs

1) Construct δ-invariants

Spherical case: elementary
Flat case: δ-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)
Hyperbolic case: δ-modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)
2) Show that the constructed δ-invariants generate all δ-invariants

Proofs

1) Construct δ-invariants

Spherical case: elementary
Flat case: δ-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)
Hyperbolic case: δ-modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)
2) Show that the constructed δ-invariants generate all δ-invariants

All cases: use arithmetic analogues of Lie-Cartan prolongations of vector fields (Barcau, Compositio 02, B-Zimmerman, Crelle 05)

Proofs

1) Construct δ-invariants

Spherical case: elementary
Flat case: δ-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)
Hyperbolic case: δ-modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)
2) Show that the constructed δ-invariants generate all δ-invariants

All cases: use arithmetic analogues of Lie-Cartan prolongations of vector fields (Barcau, Compositio 02, B-Zimmerman, Crelle 05)
3) Converse results

Proofs

1) Construct δ-invariants

Spherical case: elementary
Flat case: δ-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)
Hyperbolic case: δ-modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)
2) Show that the constructed δ-invariants generate all δ-invariants

All cases: use arithmetic analogues of Lie-Cartan prolongations of vector fields (Barcau, Compositio 02, B-Zimmerman, Crelle 05)
3) Converse results

Flat case: study dynamical systems with invariant tensor differential forms mod p (B-, IRMN 05)
δ-characters
δ-characters
Theorem
δ-characters
Theorem
E / R elliptic curve. There exists a δ-function $\psi: E(R) \rightarrow R, \operatorname{ord}(\psi)=2, \psi$ group homomorphism.
δ-characters
Theorem
E / R elliptic curve. There exists a δ-function $\psi: E(R) \rightarrow R, \operatorname{ord}(\psi)=2, \psi$ group homomorphism.

Remarks

δ-characters

Theorem

E / R elliptic curve. There exists a δ-function $\psi: E(R) \rightarrow R, \operatorname{ord}(\psi)=2, \psi$ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \rightarrow K$ for E / K elliptic curve over a function field K
δ-characters

Theorem

E / R elliptic curve. There exists a δ-function $\psi: E(R) \rightarrow R, \operatorname{ord}(\psi)=2, \psi$ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \rightarrow K$ for E / K elliptic curve over a function field K
2) ψ^{2} descends to a δ-function on $(E \backslash E[2]) /\langle[-1]\rangle=\mathbb{P}^{1} \backslash\{4$ points $\}$
δ-characters

Theorem

E / R elliptic curve. There exists a δ-function $\psi: E(R) \rightarrow R, \operatorname{ord}(\psi)=2, \psi$ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \rightarrow K$ for E / K elliptic curve over a function field K
2) ψ^{2} descends to a δ-function on $(E \backslash E[2]) /\langle[-1]\rangle=\mathbb{P}^{1} \backslash\{4$ points $\}$
which is an invariant for Lattès dynamical system $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$
δ-characters

Theorem

E / R elliptic curve. There exists a δ-function $\psi: E(R) \rightarrow R, \operatorname{ord}(\psi)=2, \psi$ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \rightarrow K$ for E / K elliptic curve over a function field K
2) ψ^{2} descends to a δ-function on $(E \backslash E[2]) /\langle[-1]\rangle=\mathbb{P}^{1} \backslash\{4$ points $\}$
which is an invariant for Lattès dynamical system $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$
induced by $[n]: E \rightarrow E$:
δ-characters

Theorem

E / R elliptic curve. There exists a δ-function $\psi: E(R) \rightarrow R, \operatorname{ord}(\psi)=2, \psi$ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \rightarrow K$ for E / K elliptic curve over a function field K
2) ψ^{2} descends to a δ-function on $(E \backslash E[2]) /\langle[-1]\rangle=\mathbb{P}^{1} \backslash\{4$ points $\}$
which is an invariant for Lattès dynamical system $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$
induced by $[n]: E \rightarrow E$:
$\psi^{2}(n P)=n^{2} \psi(P), \psi^{2}(-P)=\psi^{2}(P)$
δ-modular forms
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge} \delta$-Fourier map
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge} \delta$-Fourier map
(not injective but injective on each $M^{n}(w)$)
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge} \delta$-Fourier map
(not injective but injective on each $M^{n}(w)$)
$M^{\infty}=\bigcup M^{n}, R((q))^{\infty}=\bigcup R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$

The generators

The generators
Theorem

The generators
Theorem

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with δ-Fourier expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$

The generators
Theorem

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with δ-Fourier expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1

The generators
Theorem

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with δ-Fourier expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1
3. f^{1} and f^{∂} " δ-generate" $R_{\delta}\left(X, K^{-1}\right)^{\text {Hecke }}$.

The generators
Theorem

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with δ-Fourier expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1
3. f^{1} and f^{∂} " δ-generate" $R_{\delta}\left(X, K^{-1}\right)^{\text {Hecke }}$.
4. $f^{\partial}-1$ " δ-generates" $\operatorname{Ker}\left(M^{\infty} \rightarrow R((q))^{\infty}\right)$ (B-, Saha JNT 2012)

The generators
Theorem

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with δ-Fourier expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1
3. f^{1} and f^{∂} " δ-generate" $R_{\delta}\left(X, K^{-1}\right)^{\text {Hecke }}$.
4. $f^{\partial}-1 " \delta$-generates" $\operatorname{Ker}\left(M^{\infty} \rightarrow R((q))^{\infty}\right)$ (B-, Saha JNT 2012)
5. f^{1} and $f^{\partial}-1$ " δ-generate" $\operatorname{Ker}\left(M^{\infty} \rightarrow R((q))^{\wedge}\right)$ (B-, Saha JNT 2012)

Back to motivation for finding invariant functions

Back to motivation for finding invariant functions
Rings of invariant functions for (X, σ) identified with rings of functions on X / σ

Back to motivation for finding invariant functions
Rings of invariant functions for (X, σ) identified with rings of functions on X / σ
A different approach to quotients: groupoid strategy. Comes in 2 flavors:

1) Grothendieck's descent and 2) Connes' NC-geometry.

Rings of functions on X / σ replaced by 1) descent data or 2) convolution rings

Back to motivation for finding invariant functions
Rings of invariant functions for (X, σ) identified with rings of functions on X / σ
A different approach to quotients: groupoid strategy. Comes in 2 flavors:

1) Grothendieck's descent and 2) Connes' NC-geometry.

Rings of functions on X / σ replaced by 1) descent data or 2) convolution rings
Grothendieck descent not strong enough to deal with correspondences that have dense orbits but Connes' NC-geometry strong enough to deal with some cases

Comparison between δ-geometry and NC-geometry

	δ-geometry	NC- geometry
spherical	$\frac{\mathbb{P}^{1}(R)}{S L_{2}\left(\mathbb{Z}_{p}\right)}$	$\frac{\mathbb{P}^{1}(\mathbb{R})}{S L_{2}(\mathbb{Z})}=$ NC-modular curve
flat	$\frac{E(R)}{\left\langle\gamma_{i}\right\rangle}, \frac{E(R)}{[n]}$	$\frac{S^{1}}{\left\langle e^{2 \pi i \theta}\right\rangle}=$ NC-elliptic curve
hyperbolic	$\Gamma \backslash \mathbb{H}=S h_{\Gamma} \rightarrow \frac{S h_{\Gamma}}{\text { Hecke }}$	$\lim S h_{\Gamma}=S h^{0} \subset S h \subset S h^{(n c)}$

Comparison between δ-geometry and NC-geometry

	δ-geometry	NC- geometry
spherical	$\frac{\mathbb{P}^{1}(R)}{S L_{2}\left(\mathbb{Z}_{p}\right)}$	$\frac{\mathbb{P}^{1}(\mathbb{R})}{S L_{2}(\mathbb{Z})}=$ NC-modular curve
flat	$\frac{E(R)}{\left\langle\gamma_{i}\right\rangle}, \frac{E(R)}{[n]}$	$\frac{S^{1}}{\left\langle e^{2 \pi i \theta}\right\rangle}=$ NC-elliptic curve
hyperbolic	$\Gamma \backslash \mathbb{H}=S h_{\Gamma} \rightarrow \frac{S h_{\Gamma}}{\text { Hecke }}$	$\lim S h_{\Gamma}=S h^{0} \subset S h \subset S h^{(n c)}$

The 2 geometries are very different but they apply to similar situations

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)
$\Phi: X=X_{1}(N) \rightarrow A$ modular parametrization, A elliptic curve

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)
$\Phi: X=X_{1}(N) \rightarrow A$ modular parametrization, A elliptic curve $p \gg 0$ "good" prime

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)
$\Phi: X=X_{1}(N) \rightarrow A$ modular parametrization, A elliptic curve
$p \gg 0$ "good" prime
$Q \in X(R)$ an ordinary point.

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)
$\Phi: X=X_{1}(N) \rightarrow A$ modular parametrization, A elliptic curve
$p \gg 0$ "good" prime
$Q \in X(R)$ an ordinary point.
S set of primes inert in imaginary quadratic field of Q

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)
$\Phi: X=X_{1}(N) \rightarrow A$ modular parametrization, A elliptic curve
$p \gg 0$ "good" prime
$Q \in X(R)$ an ordinary point.
S set of primes inert in imaginary quadratic field of Q
C the S-isogeny class of Q in $X(R)$

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)
$\Phi: X=X_{1}(N) \rightarrow A$ modular parametrization, A elliptic curve
$p \gg 0$ "good" prime
$Q \in X(R)$ an ordinary point.
S set of primes inert in imaginary quadratic field of Q
C the S-isogeny class of Q in $X(R)$
Then there exists a constant c such that for any subgroup $\Gamma \leq A(R)$ with $r:=\operatorname{rank}(\Gamma)<\infty$ the set $\Phi(C) \cap \Gamma$ is finite of cardinality at most $c p^{r}$.

Applications to arithmetic geometry
Theorem (Poonen+B-, Compositio 2009)
$\Phi: X=X_{1}(N) \rightarrow A$ modular parametrization, A elliptic curve
$p \gg 0$ "good" prime
$Q \in X(R)$ an ordinary point.
S set of primes inert in imaginary quadratic field of Q
C the S-isogeny class of Q in $X(R)$
Then there exists a constant c such that for any subgroup $\Gamma \leq A(R)$ with $r:=\operatorname{rank}(\Gamma)<\infty$ the set $\Phi(C) \cap \Gamma$ is finite of cardinality at most $c p^{r}$.
Similar results for Heegner points (C replaced by $C L$)

Idea of proof

Idea of proof
Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$

Idea of proof
Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R \quad$ order 2

Idea of proof

Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R$ order 2
$f^{b}: X(R) \subset X_{1}(N)(R) \rightarrow R, \quad f^{1} \mid f^{b}, \quad f^{b}(C L)=0, \quad$ order 1

Idea of proof

Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R \quad$ order 2
$f^{b}: X(R) \subset X_{1}(N)(R) \rightarrow R, \quad f^{1} \mid f^{b}, \quad f^{b}(C L)=0, \quad$ order 1
Any $P \in X(R) \cap \Phi(C L) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

Idea of proof

Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R \quad$ order 2
$f^{b}: X(R) \subset X_{1}(N)(R) \rightarrow R, \quad f^{1} \mid f^{b}, \quad f^{b}(C L)=0, \quad$ order 1
Any $P \in X(R) \cap \Phi(C L) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$
\left\{\begin{array}{l}
f^{\sharp}(P)=0 \\
f^{b}(P)=0
\end{array}\right.
$$

Idea of proof

Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R \quad$ order 2
$f^{b}: X(R) \subset X_{1}(N)(R) \rightarrow R, \quad f^{1} \mid f^{b}, \quad f^{b}(C L)=0, \quad$ order 1
Any $P \in X(R) \cap \Phi(C L) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$
\left\{\begin{array}{l}
f^{\sharp}(P)=0 \\
f^{b}(P)=0
\end{array}\right.
$$

Intuitively

Idea of proof

Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R \quad$ order 2
$f^{b}: X(R) \subset X_{1}(N)(R) \rightarrow R, \quad f^{1} \mid f^{b}, \quad f^{b}(C L)=0, \quad$ order 1
Any $P \in X(R) \cap \Phi(C L) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$
\left\{\begin{array}{l}
f^{\sharp}(P)=0 \\
f^{b}(P)=0
\end{array}\right.
$$

Intuitively

$$
\left\{\begin{array}{l}
f^{\sharp}\left(x, x^{\prime}, x^{\prime \prime}\right)=0 \\
f^{b}\left(x, x^{\prime}\right)=0
\end{array}\right.
$$

Idea of proof

Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R \quad$ order 2
$f^{b}: X(R) \subset X_{1}(N)(R) \rightarrow R, \quad f^{1} \mid f^{b}, \quad f^{b}(C L)=0, \quad$ order 1
Any $P \in X(R) \cap \Phi(C L) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$
\left\{\begin{array}{l}
f^{\sharp}(P)=0 \\
f^{b}(P)=0
\end{array}\right.
$$

Intuitively

$$
\left\{\begin{array}{l}
f^{\sharp}\left(x, x^{\prime}, x^{\prime \prime}\right)=0 \\
f^{b}\left(x, x^{\prime}\right)=0
\end{array}\right.
$$

"Eliminate" $x^{\prime}, x^{\prime \prime}$ and get $f^{0}(x)=0$ of "order 0"

Idea of proof

Assume $\Gamma=A(R)_{\text {tors }}$ and C replaced by $C L$
Consider $f^{\sharp}=\psi \circ \Phi: X_{1}(N)(R) \rightarrow A(R) \rightarrow R \quad$ order 2
$f^{b}: X(R) \subset X_{1}(N)(R) \rightarrow R, \quad f^{1} \mid f^{b}, \quad f^{b}(C L)=0, \quad$ order 1
Any $P \in X(R) \cap \Phi(C L) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$
\left\{\begin{array}{l}
f^{\sharp}(P)=0 \\
f^{b}(P)=0
\end{array}\right.
$$

Intuitively

$$
\left\{\begin{array}{l}
f^{\sharp}\left(x, x^{\prime}, x^{\prime \prime}\right)=0 \\
f^{b}\left(x, x^{\prime}\right)=0
\end{array}\right.
$$

"Eliminate" $x^{\prime}, x^{\prime \prime}$ and get $f^{0}(x)=0$ of "order 0 "
Finitely many solutions (by Krasner's theorem) plus bound

