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Dynamical systems

X , X̃ non-singular algebraic varieties over C

σ1, σ2 : X̃ → X dominant morphisms, σ = (σ1, σ2) correspondece.

Example: X̃ ⊂ X × X , in particular X̃ the graph of a map X → X

View (X , σ) as a (generalized) dynamical system

Orbit of x ∈ X under σ is the set

{x ′ ∈ X ; there exist x1, ..., xn ∈ X , x1 = x , xn = x ′, σ1(xi ) = σ2(xi−1)}

Most of the times there is a Zariski dense orbit
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Basic pathology

(X , σ) correspondence

Define O(X )σ = {f ∈ O(X ); f ◦ σ1 = f ◦ σ2} ring of invariants

If σ has a Zariski dense orbit then O(X )σ = C

More generally: L line bundle on X , β : σ∗1L ' σ∗2L

R(X , L)=
⊕

0 6=m∈Z+
H0(X , Lm)

R(X , L)σ= {s ∈ R(X , L);βσ∗1 s = σ∗2 s} graded ring of invariants

R(X , L)σ(0)= {f /g ; f , g ∈ R(X , L)h, deg(f ) = deg(g)}, field of invariants

If σ has an infinite orbit then R(X , L)σ(0) = C

NO INVARIANTS IN ALGEBRAIC GEOMETRY
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What to do ?

Nothing

OR

Search for new geometries where we have invariants
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Strategy

Pass from the polynomial functions of algebraic geometry to more general
functions called δ-functions

Hope: more functions ⇒ more invariants

Geometry with δ-functions called δ-geometry

Passing to δ-functions is analogous to

passing from functions R→ R, x 7→ f (x)

to differential functions (Lagrangians)

C∞(R)→ C∞(R), x(t) 7→ f (x(t), x ′(t), ..., x (n)(t))

In physics: no invariant functions on space-time under the symmetries of
space-time but one has invariant Lagrangians; the same will happen in
δ-geometry

Want to apply δ-geometry to arithmetic geometry; but there are no derivations
on Z; what to do?
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The Fermat quotient δ

Define R = W (Fp) = Ẑur
p = Zp[ζN ; (N, p) = 1]̂

where upperscript ˆ means p-adic completion

Recall φ : R → R unique ring homorphism with φ(x) ≡ xp mod p

Define δ : R → R, δx = φ(x)−xp

p
Fermat quotient operator

Morally R is the analogue of C∞(R) = {x = x(t) smooth, x : R→ R}

Morally δ = “ d
dp

” is the analogue of d
dt

Example: p = 7; δ5 = “ d5
d7

” = 5−57

7
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δ-functions

For X smooth scheme over R

Say f : X (R)→ R is a δ-function of order r if for any point in X (R) there exist

1) an affine neighborhood U ⊂ X

2) an embedding U ⊂ An

3) a restricted power series F ∈ R[T ,T ′, ...,T (r) ]̂ such that

f (x) = F (x , δx , ..., δrx), x ∈ U(R) ⊂ Rn

Denote Or (X ) ring of δ-functions of order r

Note: U 7→ Or (U) sheaf Or on X for the Zariski topology

δ-functions are arithmetic analogues of differential functions (Lagrangians)

Example f : A1(R) = R → R, f (x) =
∑

n≥1 p
nxn(δx)n

3

(δ2x)n
n

, δ-function of
order 2
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δ-line bundles

Define δ-line bundle on X as a locally free sheaf of Or -modules of rank 1

Define W = Z[φ] = {
∑

aiφ
i ; ai ∈ Z}

Define W+ = {
∑

aiφ
i ; ai ∈ Z+}

For w =
∑

aiφ
i ∈W , f ∈ Or (X )× set f w =

∏
(φi (f ))ai .

For L line bundle on X defined by cocycle (fij) define δ-line bundle Lw by
cocycle (f wij )

For σ1, σ2 : X̃ → X etale between smooth schemes over R

Rδ(X , L)=
⊕

06=m∈W+
H0(X , Lw )

Rδ(X , L)σ= {s ∈ Rδ(X , L);βσ∗1 s = σ∗2 s} graded ring of δ-invariants

Rδ(X , L)σ(0)= {f /g ; f , g ∈ Rδ(X , L)h, p 6 |g , deg(f ) = deg(g)}, δ-DVR of
δ-invariants (δ acts on this)

Basic Example L = K−1, anticanonical bundle
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Main result

Theorem

The ring Rδ(X ,K−1)σ is “δ-birationally equivalent” to the ring Rδ(P1,O(1)) if
the correspondence σ on X “comes from” one of the following cases:

1) (spherical case) The standard action of SL2(Zp) on P1.

2) (flat case) A dynamical system f : P1 → P1 which is post-critically finite
with (orbifold) Euler characteristic zero.

3) (hyperbolic case) The action of a Hecke correspondence on a modular (or
Shimura) curve.
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Explanations

By σ “comes from” a group action on X we mean that (“up to some specific
finite schemes”) X̃ is the disjoint union of the graphs of finitely many
automorphisms generating the action.

By σ “comes from” an endomorphism of X we mean that (“up to some
specific finite subschemes”) X̃ is the graph of the endomorphism.

δ-birational equivalence means isomorphism (compatible with the actions of δ)
between the p-adic completions of the rings Rδ(X ,K−1)σ(0) and Rδ(P1,O(1))(0).

post-critically finite with (orbifold) Euler characteristic zero is essentially
equivalent to f multiplicative (f (x) = xN), Chebyshev, or Lattèes (i.e. induced
from an endomorphism of an elliptic curve)
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Converse result

Theorem

Let f : P1 → P1 be defined over a number field and assume for p >> 0 the
correspondence (X , σ) obtained from the graph of f satisfies
Rδ(X ,K−1)σ(0) 6= R. Then f is post critically finite with (orb) Euler
characteristic zero.
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Proofs

1) Construct δ-invariants

Spherical case: elementary

Flat case: δ-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

Hyperbolic case: δ-modular forms (B-, Crelle 00, Barcau, Compositio 02, B-,
Compositio 03, 04)

2) Show that the constructed δ-invariants generate all δ-invariants

All cases: use arithmetic analogues of Lie-Cartan prolongations of vector fields
(Barcau, Compositio 02, B-Zimmerman, Crelle 05)

3) Converse results

Flat case: study dynamical systems with invariant tensor differential forms mod
p (B-, IRMN 05)
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δ-characters

Theorem

E/R elliptic curve. There exists a δ-function ψ : E(R)→ R, ord(ψ) = 2, ψ
group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map E(K)→ K for E/K elliptic
curve over a function field K

2) ψ2 descends to a δ-function on (E\E [2])/〈[−1]〉 = P1\{4 points}

which is an invariant for Lattès dynamical system P1 → P1

induced by [n] : E → E :

ψ2(nP) = n2ψ(P), ψ2(−P) = ψ2(P)
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δ-modular forms

X ⊂ X1(N), N > 4, X affine, disjoint from cusps and supersingular locus

L line bundle on X1(N) whose m-power has sections modular forms of weight m

V ∗ = Spec(
⊕

m∈Z L
m
X ) physical line bundle on X minos zero section

Mn = On(V ∗) ring of δ-modular functions of order n

Mn(w) space of δ-modular forms of weight w =
∑

aiφ
i ∈W :

f (λ · P) = λw f (P), λ ∈ R×.

Mn → R((q))[q′, ..., q(n) ]̂ δ-Fourier map

(not injective but injective on each Mn(w))

M∞ =
⋃

Mn, R((q))∞ =
⋃

R((q))[q′, ..., q(n) ]̂
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The generators

Theorem

1. There exists f 1 ∈ M1(−1− φ) with δ-Fourier expansion 1
p

log
(

1 + p q′

qp

)
2. There exists f ∂ ∈ M1(φ− 1) with δ-Fourier expansion 1

3. f 1 and f ∂ “δ-generate” Rδ(X ,K−1)Hecke.

4. f ∂ − 1 “δ-generates” Ker(M∞ → R((q))∞) (B-, Saha JNT 2012)

4. f 1 and f ∂ − 1 “δ-generate” Ker(M∞ → R((q))̂ ) (B-, Saha JNT 2012)
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Back to motivation for finding invariant functions

Rings of invariant functions for (X , σ) identified with rings of functions on X/σ

A different approach to quotients: groupoid strategy. Comes in 2 flavors:
1) Grothendieck’s descent and 2) Connes’ NC-geometry.
Rings of functions on X/σ replaced by 1) descent data or 2) convolution rings

Grothendieck descent not strong enough to deal with correspondences that have
dense orbits but Connes’ NC-geometry strong enough to deal with some cases
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Comparison between δ-geometry and NC -geometry

δ-geometry NC- geometry

spherical P1(R)
SL2(Zp)

P1(R)
SL2(Z)

= NC-modular curve

flat E(R)
〈γi 〉

, E(R)
[n]

S1

〈e2πiθ〉 = NC-elliptic curve

hyperbolic Γ\H = ShΓ → ShΓ
Hecke

lim ShΓ = Sh0 ⊂ Sh ⊂ Sh(nc)

The 2 geometries are very different but they apply to similar situations
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Applications to arithmetic geometry

Theorem (Poonen+B-, Compositio 2009)

Φ : X = X1(N)→ A modular parametrization, A elliptic curve

p >> 0 “good” prime

Q ∈ X (R) an ordinary point.

S set of primes inert in imaginary quadratic field of Q

C the S-isogeny class of Q in X (R)

Then there exists a constant c such that for any subgroup Γ ≤ A(R) with
r := rank(Γ) <∞ the set Φ(C) ∩ Γ is finite of cardinality at most cpr .

Similar results for Heegner points (C replaced by CL)
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Similar results for Heegner points (C replaced by CL)
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Idea of proof

Assume Γ = A(R)tors and C replaced by CL

Consider f ] = ψ ◦ Φ : X1(N)(R)→ A(R)→ R order 2

f [ : X (R) ⊂ X1(N)(R)→ R, f 1|f [, f [(CL) = 0, order 1

Any P ∈ X (R) ∩ Φ(CL) ∩ Γ satisfies the system of “differential equations of
order ≤ 2 in 1 unknown”

{
f ](P) = 0

f [(P) = 0

Intuitively {
f ](x , x ′, x ′′) = 0

f [(x , x ′) = 0

“Eliminate” x ′, x ′′ and get f 0(x) = 0 of “order 0”

Finitely many solutions (by Krasner’s theorem) plus bound
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