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Dynamical systems

X, X non-singular algebraic varieties over C

01,05 : X — X dominant morphisms, o = (o1, 02) correspondece.
Example: X CXxX,in particular X the graph of a map X — X
View (X, o) as a (generalized) dynamical system

Orbit of x € X under o is the set

{x" € X;there exist x1,...,x, € X, x1 = x,x, = X', 01(x;) = 02(xi-1)}

Most of the times there is a Zariski dense orbit
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Basic pathology

(X, o) correspondence

Define O(X)? = {f € O(X); f o o1 = f 0 02} ring of invariants

If o has a Zariski dense orbit then O(X)? =C

More generally: L line bundle on X, 8: 0L ~o5L

R(X, L)= @osmez, H'(X,L™)

R(X,L)?={s € R(X,L); Bois = o;s} graded ring of invariants
R(X,L)oy=1{f/g:f,g € R(X, L)" deg(f) = deg(g)}, field of invariants
If o has an infinite orbit then R(X, L)%, = C

NO INVARIANTS IN ALGEBRAIC GEOMETRY
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Search for new geometries where we have invariants
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Strategy
Pass from the polynomial functions of algebraic geometry to more general
functions called §-functions
Hope: more functions = more invariants
Geometry with d-functions called j-geometry
Passing to d-functions is analogous to
passing from functions R — R, x +— f(x)
to differential functions (Lagrangians)
C®(R) = C=(R), x(t)+ f(x(t),x'(¢), ...,x(”)(t))

In physics: no invariant functions on space-time under the symmetries of
space-time but one has invariant Lagrangians; the same will happen in
o-geometry

Want to apply d-geometry to arithmetic geometry; but there are no derivations
on Z; what to do?
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o-functions

For X smooth scheme over R

Say f : X(R) — R is a 0-function of order r if for any point in X(R) there exist
an affine neighborhood U C X
an embedding U C A"
a restricted power series F € R[T, T’, ..., T)]" such that

f(x) = F(x,0x,...,0'x), x€ U(R)C R"

Denote O"(X) ring of é-functions of order r

Note: U +— O"(U) sheaf O" on X for the Zariski topology

f:AYR)=R =R, f(x) =3, p"x"(éx)"3(52)<)"n, d-function of
order 2 -
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Define d-line bundle on X as a locally free sheaf of O"-modules of rank 1
Define W = Z[¢] = {3 ai¢’; a; € Z}

Define Wy = {3 ai¢';ai € Zy }

Forw =Y a;¢' € W, f € O(X)* set f* = T](¢'(£)).

For L line bundle on X defined by cocycle (f;) define -line bundle L" by
cocycle (")

For 01,02 : X — X etale between smooth schemes over R
Rs(X, L)= @o—;mew_,_ HO(Xa L)
Rs(X,L)"={s € Rs(X, L); Bois = o5s} graded ring of d-invariants

Rs(X,L){y={f/g:f,g € Rs(X,L)", p fg,deg(f) = deg(g)}, 6-DVR of
d-invariants (& acts on this)

L = K~!, anticanonical bundle
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Main result

Theorem

The ring Rs(X, K™)7 is “0-birationally equivalent” to the ring Rs(P*, O(1)) if
the correspondence o on X ‘“comes from” one of the following cases:

The standard action of SL»(Z,) on P'.
A dynamical system f : P! — P! which is post-critically finite
with (orbifold) Euler characteristic zero.

The action of a Hecke correspondence on a modular (or
Shimura) curve.
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In all these cases the categorical quotient X /o is a“rational variety in
d-geometry”
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Explanations

By o “comes from” a group action on X we mean that (“up to some specific
finite schemes”) X is the disjoint union of the graphs of finitely many
automorphisms generating the action.

By o “comes from” an endomorphism of X we mean that (“up to some
specific finite subschemes”) X is the graph of the endomorphism.

0-birational equivalence means isomorphism (compatible with the actions of ¢)
between the p-adic completions of the rings Rs(X, Kil)fo) and Rs(P', O(1))0).

post-critically finite with (orbifold) Euler characteristic zero is essentially
equivalent to # multiplicative (f(x) = x), Chebyshev, or Lattees (i.e. induced
from an endomorphism of an elliptic curve)
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Theorem

Let f : P! — P! be defined over a number field and assume for p >> 0 the
correspondence (X, o) obtained from the graph of f satisfies

. Then f is post critically finite with (orb) Euler
characteristic zero.
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Proofs

1) Construct d-invariants
. elementary
. 0-characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

: d-modular forms (B-, Crelle 00, Barcau, Compositio 02, B-,
Compositio 03, 04)

2) Show that the constructed d-invariants generate all d-invariants

. use arithmetic analogues of Lie-Cartan prolongations of vector fields
(Barcau, Compositio 02, B-Zimmerman, Crelle 05)

3) Converse results

: study dynamical systems with invariant tensor differential forms mod
p (B-, IRMN 05)
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o-characters

Theorem

E/R elliptic curve. There exists a -function ¢ : E(R) — R, ord(¢)) = 2, ¢
group homomorphism.

1) 4 an arithmetic analogue of the Manin map E(K) — K for E/K elliptic
curve over a function field K

2) 9? descends to a d-function on (E\E[2])/([~1]) = P*\{4 points}
which is an invariant for Lattés dynamical system P! — P!

induced by [n] : E — E:

U3 (nP) = n*¢(P), v*(—P) = ¢*(P)
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X C Xi(N), N > 4, X affine, disjoint from cusps and supersingular locus

L line bundle on X1(/N) whose m-power has sections modular forms of weight m
V* = Spec(6B,,, LX) physical line bundle on X minos zero section

M"™ = O"(V*) ring of §-modular functions of order n

M"(w) space of §-modular forms of weight w = " a;¢' € W:
f(A-P)=X"f(P), A€ R*.

M" = R((g)[¢’, ..., g'™]" 6-Fourier map

(not injective but injective on each M"(w))

M= =JM", R((9))> =UR{(a)lq, .. ¢
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The generators
Theorem
There exists f* € M*(—1 — ¢) with J-Fourier expansion % log (1 + pg—;)
There exists f7 € M*(¢ — 1) with d-Fourier expansion 1
! and £ “5-generate” Rs(X, K1)Hecke,
f9 —1 “5-generates” Ker(M> — R((q))>) (B-, Saha JNT 2012)
! and f9 — 1 “6-generate” Ker(M™ — R((q))") (B-, Saha JNT 2012)
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Rings of invariant functions for (X, o) identified with rings of functions on X /o

A different approach to quotients: groupoid strategy. Comes in 2 flavors:
1) Grothendieck's descent and 2) Connes’ NC-geometry.
Rings of functions on X /o replaced by 1) descent data or 2) convolution rings

Grothendieck descent not strong enough to deal with correspondences that have
dense orbits but Connes’ NC-geometry strong enough to deal with some cases
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Applications to arithmetic geometry

Theorem (Poonen+B-, Compositio 2009)

® : X = X1(N) — A modular parametrization, A elliptic curve
p >> 0 “good” prime

Q € X(R) an ordinary point.

S set of primes inert in imaginary quadratic field of Q

C the S-isogeny class of Q in X(R)

Then there exists a constant ¢ such that for any subgroup I' < A(R) with
r:= rank(l') < oo the set ®(C) NT is finite of cardinality at most cp”.

Similar results for Heegner points (C replaced by CL)
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Idea of proof
Assume I' = A(R)tors and C replaced by CL
Consider f# =1 o ®: X;(N)(R) — A(R) — R order 2
7 X(R) € Xa(N)(R) = R, f'|f’, f’(CL)=0, order1

Any P € X(R) N ®(CL) NT satisfies the system of “differential equations of
order < 2 in 1 unknown”

Intuitively

ff(x,x',x") =0
P(x,x")=0

“Eliminate” x’, x” and get f°(x) = 0 of “order 0"

Finitely many solutions (by Krasner's theorem) plus bound



