Arithmetic differential invariants of dynamical systems

Alexandru Buium

Department of Mathematics and Statistics University of New Mexico buium@math.unm.edu

January 31, 2012

 X, \tilde{X} non-singular algebraic varieties over $\mathbb C$

 X, \tilde{X} non-singular algebraic varieties over \mathbb{C} $\sigma_1, \sigma_2 : \tilde{X} \to X$ dominant morphisms, $\sigma = (\sigma_1, \sigma_2)$ correspondece.

・ロト・日本・モート モー うへぐ

 X, \tilde{X} non-singular algebraic varieties over \mathbb{C} $\sigma_1, \sigma_2 : \tilde{X} \to X$ dominant morphisms, $\sigma = (\sigma_1, \sigma_2)$ correspondece. Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \to X$

 X, \tilde{X} non-singular algebraic varieties over \mathbb{C} $\sigma_1, \sigma_2 : \tilde{X} \to X$ dominant morphisms, $\sigma = (\sigma_1, \sigma_2)$ correspondece. Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \to X$ View (X, σ) as a (generalized) dynamical system

 X, \tilde{X} non-singular algebraic varieties over \mathbb{C} $\sigma_1, \sigma_2 : \tilde{X} \to X$ dominant morphisms, $\sigma = (\sigma_1, \sigma_2)$ correspondece. Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \to X$ View (X, σ) as a (generalized) dynamical system Orbit of $x \in X$ under σ is the set

 X, \tilde{X} non-singular algebraic varieties over \mathbb{C} $\sigma_1, \sigma_2 : \tilde{X} \to X$ dominant morphisms, $\sigma = (\sigma_1, \sigma_2)$ correspondece. Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \to X$ View (X, σ) as a (generalized) dynamical system Orbit of $x \in X$ under σ is the set $\{x' \in X; \text{ there exist } x_1, ..., x_n \in X, x_1 = x, x_n = x', \sigma_1(x_i) = \sigma_2(x_{i-1})\}$

 X, \tilde{X} non-singular algebraic varieties over \mathbb{C} $\sigma_1, \sigma_2 : \tilde{X} \to X$ dominant morphisms, $\sigma = (\sigma_1, \sigma_2)$ correspondece. Example: $\tilde{X} \subset X \times X$, in particular \tilde{X} the graph of a map $X \to X$ View (X, σ) as a (generalized) dynamical system Orbit of $x \in X$ under σ is the set $\{x' \in X;$ there exist $x_1, ..., x_n \in X, x_1 = x, x_n = x', \sigma_1(x_i) = \sigma_2(x_{i-1})\}$ Most of the times there is a Zariski dense orbit

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 (X, σ) correspondence



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants

If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma} = \mathbb{C}$

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants

If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma} = \mathbb{C}$

More generally: *L* line bundle on *X*, $\beta : \sigma_1^* L \simeq \sigma_2^* L$

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma} = \mathbb{C}$ More generally: L line bundle on $X, \beta : \sigma_1^* L \simeq \sigma_2^* L$ $R(X, L) = \bigoplus_{0 \neq m \in \mathbb{Z}_+} H^0(X, L^m)$

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma} = \mathbb{C}$ More generally: L line bundle on $X, \beta : \sigma_1^* L \simeq \sigma_2^* L$ $R(X, L) = \bigoplus_{0 \neq m \in \mathbb{Z}_+} H^0(X, L^m)$ $R(X, L)^{\sigma} = \{s \in R(X, L); \beta \sigma_1^* s = \sigma_2^* s\}$ graded ring of invariants

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma} = \mathbb{C}$ More generally: L line bundle on $X, \beta : \sigma_1^* L \simeq \sigma_2^* L$ $R(X, L) = \bigoplus_{0 \neq m \in \mathbb{Z}_+} H^0(X, L^m)$ $R(X, L)^{\sigma} = \{s \in R(X, L); \beta \sigma_1^* s = \sigma_2^* s\}$ graded ring of invariants $R(X, L)_{(0)}^{\sigma} = \{f/g; f, g \in R(X, L)^h, deg(f) = deg(g)\}$, field of invariants

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma} = \mathbb{C}$ More generally: L line bundle on $X, \beta : \sigma_1^* L \simeq \sigma_2^* L$ $R(X, L) = \bigoplus_{0 \neq m \in \mathbb{Z}_+} H^0(X, L^m)$ $R(X, L)^{\sigma} = \{s \in R(X, L); \beta \sigma_1^* s = \sigma_2^* s\}$ graded ring of invariants $R(X, L)^{\sigma}_{(0)} = \{f/g; f, g \in R(X, L)^h, deg(f) = deg(g)\}$, field of invariants If σ has an infinite orbit then $R(X, L)^{\sigma}_{(0)} = \mathbb{C}$

 (X, σ) correspondence

Define $\mathcal{O}(X)^{\sigma} = \{f \in \mathcal{O}(X); f \circ \sigma_1 = f \circ \sigma_2\}$ ring of invariants If σ has a Zariski dense orbit then $\mathcal{O}(X)^{\sigma} = \mathbb{C}$ More generally: L line bundle on $X, \beta : \sigma_1^* L \simeq \sigma_2^* L$ $R(X, L) = \bigoplus_{0 \neq m \in \mathbb{Z}_+} H^0(X, L^m)$ $R(X, L)^{\sigma} = \{s \in R(X, L); \beta \sigma_1^* s = \sigma_2^* s\}$ graded ring of invariants $R(X, L)^{\sigma}_{(0)} = \{f/g; f, g \in R(X, L)^h, deg(f) = deg(g)\}$, field of invariants If σ has an infinite orbit then $R(X, L)^{\sigma}_{(0)} = \mathbb{C}$ NO INVARIANTS IN ALGEBRAIC GEOMETRY

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>

<□ > < @ > < E > < E > E のQ @

Nothing

<□ > < @ > < E > < E > E のQ @

Nothing

OR

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Nothing

 OR

Search for new geometries where we have invariants

Pass from the polynomial functions of algebraic geometry to more general functions called δ -functions

(ロ)、(型)、(E)、(E)、 E) の(の)

Pass from the polynomial functions of algebraic geometry to more general functions called δ -functions

Hope: more functions \Rightarrow more invariants

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pass from the polynomial functions of algebraic geometry to more general functions called δ -functions

Hope: more functions \Rightarrow more invariants

Geometry with δ -functions called δ -geometry

Pass from the polynomial functions of algebraic geometry to more general functions called δ -functions

Hope: more functions \Rightarrow more invariants

Geometry with δ -functions called δ -geometry

Passing to $\delta\text{-functions}$ is analogous to

Pass from the polynomial functions of algebraic geometry to more general functions called δ -functions

Hope: more functions \Rightarrow more invariants

Geometry with δ -functions called δ -geometry

Passing to $\delta\text{-functions}$ is analogous to

passing from functions $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Pass from the polynomial functions of algebraic geometry to more general functions called δ -functions

Hope: more functions \Rightarrow more invariants

Geometry with δ -functions called δ -geometry

Passing to $\delta\text{-functions}$ is analogous to

passing from functions $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$

to differential functions (Lagrangians)

Pass from the polynomial functions of algebraic geometry to more general functions called $\delta\text{-functions}$

Hope: more functions \Rightarrow more invariants

Geometry with δ -functions called δ -geometry

Passing to $\delta\text{-functions}$ is analogous to

passing from functions $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$

to differential functions (Lagrangians)

 $C^{\infty}(\mathbb{R})
ightarrow C^{\infty}(\mathbb{R}), \ x(t) \mapsto f(x(t), x'(t), ..., x^{(n)}(t))$

Pass from the polynomial functions of algebraic geometry to more general functions called $\delta\text{-functions}$

Hope: more functions \Rightarrow more invariants

Geometry with δ -functions called δ -geometry

Passing to $\delta\text{-functions}$ is analogous to

passing from functions $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$

to differential functions (Lagrangians)

 $C^{\infty}(\mathbb{R})
ightarrow C^{\infty}(\mathbb{R}), \ x(t) \mapsto f(x(t), x'(t), ..., x^{(n)}(t))$

In physics: no invariant functions on space-time under the symmetries of space-time but one has invariant Lagrangians; the same will happen in δ -geometry

Pass from the polynomial functions of algebraic geometry to more general functions called $\delta\text{-functions}$

Hope: more functions \Rightarrow more invariants

Geometry with δ -functions called δ -geometry

Passing to $\delta\text{-functions}$ is analogous to

passing from functions $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$

to differential functions (Lagrangians)

 $\mathcal{C}^\infty(\mathbb{R}) o \mathcal{C}^\infty(\mathbb{R}), \ x(t) \mapsto f(x(t), x'(t), ..., x^{(n)}(t))$

In physics: no invariant functions on space-time under the symmetries of space-time but one has invariant Lagrangians; the same will happen in δ -geometry

Want to apply δ -geometry to arithmetic geometry; but there are no derivations on \mathbb{Z} ; what to do?

The Fermat quotient $\boldsymbol{\delta}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The Fermat quotient δ

Define $R = W(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\hat{}}$

The Fermat quotient δ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Define $R = W(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\uparrow}$

where upperscript ^ means p-adic completion

The Fermat quotient δ

Define $R = W(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\uparrow}$ where upperscript \uparrow means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$

Define $R = W(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\uparrow}$ where upperscript \uparrow means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R$, $\delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator

(日) (同) (三) (三) (三) (○) (○)

Define $R = W(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\wedge}$ where upperscript $\hat{}$ means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R$, $\delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator Morally *R* is the analogue of $C^{\infty}(\mathbb{R}) = \{x = x(t) \mod x : \mathbb{R} \to \mathbb{R}\}$

(日) (同) (三) (三) (三) (○) (○)

Define $R = W(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\uparrow}$ where upperscript $\hat{}$ means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R$, $\delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator Morally *R* is the analogue of $C^{\infty}(\mathbb{R}) = \{x = x(t) \mod x : \mathbb{R} \to \mathbb{R}\}$ Morally $\delta = \frac{d}{dp}$ is the analogue of $\frac{d}{dt}$

Define $R = W(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\uparrow}$ where upperscript \uparrow means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R$, $\delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator Morally *R* is the analogue of $C^{\infty}(\mathbb{R}) = \{x = x(t) \mod x : \mathbb{R} \to \mathbb{R}\}$ Morally $\delta = \frac{d}{dp}$ is the analogue of $\frac{d}{dt}$ Example: p = 7; $\delta 5 = \frac{d5^n}{dT} = \frac{5 - 5^7}{T}$

<□ > < @ > < E > < E > E のQ @

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For X smooth scheme over R

For X smooth scheme over R

Say $f : X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

For X smooth scheme over R

Say $f : X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist 1) an affine neighborhood $U \subset X$

(ロ)、(型)、(E)、(E)、 E) の(の)

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^n$

For X smooth scheme over R

Say $f : X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^n$
- 3) a restricted power series $F \in R[T, T', ..., T^{(r)}]^{\uparrow}$ such that

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^n$
- 3) a restricted power series $F \in R[T, T', ..., T^{(r)}]^{\hat{}}$ such that

 $f(x) = F(x, \delta x, ..., \delta^r x), \ x \in U(R) \subset R^n$

For X smooth scheme over R

Say $f : X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^n$
- 3) a restricted power series $F \in R[T, T', ..., T^{(r)}]^{\hat{}}$ such that

 $f(x) = F(x, \delta x, ..., \delta^r x), \ x \in U(R) \subset R^n$

Denote $\mathcal{O}^{r}(X)$ ring of δ -functions of order r

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^n$
- 3) a restricted power series $F \in R[T, T', ..., T^{(r)}]^{\uparrow}$ such that

 $f(x) = F(x, \delta x, ..., \delta^r x), \ x \in U(R) \subset R^n$

Denote $\mathcal{O}^r(X)$ ring of δ -functions of order r

Note: $U \mapsto \mathcal{O}^r(U)$ sheaf \mathcal{O}^r on X for the Zariski topology

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^n$
- 3) a restricted power series $F \in R[T, T', ..., T^{(r)}]^{\uparrow}$ such that

 $f(x) = F(x, \delta x, ..., \delta^r x), \ x \in U(R) \subset R^n$

Denote $\mathcal{O}^r(X)$ ring of δ -functions of order r

Note: $U \mapsto \mathcal{O}^r(U)$ sheaf \mathcal{O}^r on X for the Zariski topology

 δ -functions are arithmetic analogues of differential functions (Lagrangians)

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^n$
- 3) a restricted power series $F \in R[T, T', ..., T^{(r)}]^{\uparrow}$ such that

$$f(x) = F(x, \delta x, ..., \delta' x), \ x \in U(R) \subset R^n$$

Denote $\mathcal{O}^{r}(X)$ ring of δ -functions of order r

Note: $U \mapsto \mathcal{O}^r(U)$ sheaf \mathcal{O}^r on X for the Zariski topology

 δ -functions are arithmetic analogues of differential functions (Lagrangians)

Example $f : \mathbb{A}^1(R) = R \to R$, $f(x) = \sum_{n \ge 1} p^n x^n (\delta x)^{n^3} (\delta^2 x)^{n^n}$, δ -function of order 2

$\delta\text{-line}$ bundles

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1

(ロ)、(型)、(E)、(E)、 E) の(の)

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i; a_i \in \mathbb{Z}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i; a_i \in \mathbb{Z}\}$ Define $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i; a_i \in \mathbb{Z}\}$ Define $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$ For $w = \sum a_i \phi^i \in W$, $f \in \mathcal{O}^r(X)^{\times}$ set $f^w = \prod (\phi^i(f))^{a_i}$.

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i; a_i \in \mathbb{Z}\}$ Define $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$ For $w = \sum a_i \phi^i \in W$, $f \in \mathcal{O}^r(X)^{\times}$ set $f^w = \prod (\phi^i(f))^{a_i}$. For L line bundle on X defined by cocycle (f_{ij}) define δ -line bundle L^w by cocycle (f_{ij}^w)

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i; a_i \in \mathbb{Z}\}$ Define $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$ For $w = \sum a_i \phi^i \in W$, $f \in \mathcal{O}^r(X)^{\times}$ set $f^w = \prod (\phi^i(f))^{a_i}$. For L line bundle on X defined by cocycle (f_{ij}) define δ -line bundle L^w by cocycle (f_{ij}^w)

For $\sigma_1, \sigma_2: \widetilde{X} \to X$ etale between smooth schemes over R

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i; a_i \in \mathbb{Z}\}$ Define $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$ For $w = \sum a_i \phi^i \in W$, $f \in \mathcal{O}^r(X)^{\times}$ set $f^w = \prod (\phi^i(f))^{a_i}$. For L line bundle on X defined by cocycle (f_{ij}) define δ -line bundle L^w by cocycle (f_{ij}^w) For $\sigma_1, \sigma_2 : \tilde{X} \to X$ etale between smooth schemes over R $R_{\delta}(X, L) = \bigoplus_{0 \neq m \in W_+} H^0(X, L^w)$

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i; a_i \in \mathbb{Z}\}$ **Define** $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$ For $w = \sum a_i \phi^i \in W$, $f \in \mathcal{O}^r(X)^{\times}$ set $f^w = \prod (\phi^i(f))^{a_i}$. For L line bundle on X defined by cocycle (f_{ij}) define δ -line bundle L^w by cocycle (f_{ii}^w) For $\sigma_1, \sigma_2 : \tilde{X} \to X$ etale between smooth schemes over *R* $R_{\delta}(X, L) = \bigoplus_{0 \neq m \in W_{\perp}} H^{0}(X, L^{w})$ $R_{\delta}(X,L)^{\sigma} = \{s \in R_{\delta}(X,L); \beta \sigma_1^* s = \sigma_2^* s\}$ graded ring of δ -invariants

(日) (同) (三) (三) (三) (○) (○)

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i : a_i \in \mathbb{Z}\}$ **Define** $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$ For $w = \sum a_i \phi^i \in W$, $f \in \mathcal{O}^r(X)^{\times}$ set $f^w = \prod (\phi^i(f))^{a_i}$. For L line bundle on X defined by cocycle (f_{ij}) define δ -line bundle L^w by cocycle (f_{ii}^w) For $\sigma_1, \sigma_2 : \tilde{X} \to X$ etale between smooth schemes over *R* $R_{\delta}(X, L) = \bigoplus_{0 \neq m \in W_{\perp}} H^{0}(X, L^{w})$ $R_{\delta}(X,L)^{\sigma} = \{s \in R_{\delta}(X,L); \beta \sigma_1^* s = \sigma_2^* s\}$ graded ring of δ -invariants $R_{\delta}(X,L)_{(0)}^{\sigma} = \{f/g; f,g \in R_{\delta}(X,L)^{h}, p \not| g, deg(f) = deg(g)\}, \delta$ -DVR of δ -invariants (δ acts on this)

・ロト・(中下・(中下・(中下・))

Define δ -line bundle on X as a locally free sheaf of \mathcal{O}^r -modules of rank 1 Define $W = \mathbb{Z}[\phi] = \{\sum a_i \phi^i : a_i \in \mathbb{Z}\}$ **Define** $W_+ = \{\sum a_i \phi^i; a_i \in \mathbb{Z}_+\}$ For $w = \sum a_i \phi^i \in W$, $f \in \mathcal{O}^r(X)^{\times}$ set $f^w = \prod (\phi^i(f))^{a_i}$. For L line bundle on X defined by cocycle (f_{ij}) define δ -line bundle L^w by cocycle (f_{ii}^w) For $\sigma_1, \sigma_2 : \tilde{X} \to X$ etale between smooth schemes over *R* $R_{\delta}(X, L) = \bigoplus_{0 \neq m \in W_{\perp}} H^{0}(X, L^{w})$ $R_{\delta}(X,L)^{\sigma} = \{s \in R_{\delta}(X,L); \beta \sigma_1^* s = \sigma_2^* s\}$ graded ring of δ -invariants $R_{\delta}(X,L)_{(0)}^{\sigma} = \{f/g; f,g \in R_{\delta}(X,L)^{h}, p \not| g, deg(f) = deg(g)\}, \delta$ -DVR of δ -invariants (δ acts on this)

Basic Example $L = K^{-1}$, anticanonical bundle

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>

Theorem

Theorem

The ring $R_{\delta}(X, K^{-1})^{\sigma}$ is " δ -birationally equivalent" to the ring $R_{\delta}(\mathbb{P}^1, \mathcal{O}(1))$ if the correspondence σ on X "comes from" one of the following cases:

Theorem

The ring $R_{\delta}(X, K^{-1})^{\sigma}$ is " δ -birationally equivalent" to the ring $R_{\delta}(\mathbb{P}^1, \mathcal{O}(1))$ if the correspondence σ on X "comes from" one of the following cases:

1) (spherical case) The standard action of $SL_2(\mathbb{Z}_p)$ on \mathbb{P}^1 .

Theorem

The ring $R_{\delta}(X, K^{-1})^{\sigma}$ is " δ -birationally equivalent" to the ring $R_{\delta}(\mathbb{P}^1, \mathcal{O}(1))$ if the correspondence σ on X "comes from" one of the following cases:

1) (spherical case) The standard action of $SL_2(\mathbb{Z}_p)$ on \mathbb{P}^1 .

2) (flat case) A dynamical system $f : \mathbb{P}^1 \to \mathbb{P}^1$ which is post-critically finite with (orbifold) Euler characteristic zero.

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem

The ring $R_{\delta}(X, K^{-1})^{\sigma}$ is " δ -birationally equivalent" to the ring $R_{\delta}(\mathbb{P}^{1}, \mathcal{O}(1))$ if the correspondence σ on X "comes from" one of the following cases:

1) (spherical case) The standard action of $SL_2(\mathbb{Z}_p)$ on \mathbb{P}^1 .

2) (flat case) A dynamical system $f : \mathbb{P}^1 \to \mathbb{P}^1$ which is post-critically finite with (orbifold) Euler characteristic zero.

3) (hyperbolic case) The action of a Hecke correspondence on a modular (or Shimura) curve.

(日) (日) (日) (日) (日) (日) (日) (日)

Morally

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>

Morally

In all these cases the categorical quotient X/σ is a "rational variety in $\delta\text{-geometry}"$

Explanations

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

By σ "comes from" an endomorphism of X we mean that ("up to some specific finite subschemes") \tilde{X} is the graph of the endomorphism.

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

By σ "comes from" an endomorphism of X we mean that ("up to some specific finite subschemes") \tilde{X} is the graph of the endomorphism.

 δ -birational equivalence means isomorphism (compatible with the actions of δ) between the *p*-adic completions of the rings $R_{\delta}(X, K^{-1})^{\sigma}_{(0)}$ and $R_{\delta}(\mathbb{P}^{1}, \mathcal{O}(1))_{(0)}$.

Explanations

By σ "comes from" a group action on X we mean that ("up to some specific finite schemes") \tilde{X} is the disjoint union of the graphs of finitely many automorphisms generating the action.

By σ "comes from" an endomorphism of X we mean that ("up to some specific finite subschemes") \tilde{X} is the graph of the endomorphism.

 δ -birational equivalence means isomorphism (compatible with the actions of δ) between the *p*-adic completions of the rings $R_{\delta}(X, K^{-1})^{\sigma}_{(0)}$ and $R_{\delta}(\mathbb{P}^{1}, \mathcal{O}(1))_{(0)}$.

post-critically finite with (orbifold) Euler characteristic zero is essentially equivalent to f multiplicative ($f(x) = x^N$), Chebyshev, or Lattèes (i.e. induced from an endomorphism of an elliptic curve)

(日) (同) (三) (三) (三) (○) (○)

Converse result

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Converse result

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Theorem

Converse result

Theorem

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be defined over a number field and assume for p >> 0 the correspondence (X, σ) obtained from the graph of f satisfies $R_{\delta}(X, K^{-1})^{\sigma}_{(0)} \neq R$. Then f is post critically finite with (orb) Euler characteristic zero.

1) Construct δ -invariants

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

1) Construct δ -invariants

Spherical case: elementary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1) Construct δ -invariants

Spherical case: elementary

Flat case: δ -characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

1) Construct δ -invariants

Spherical case: elementary

Flat case: δ -characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

Hyperbolic case: δ -modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

1) Construct δ -invariants

Spherical case: elementary

Flat case: δ -characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

Hyperbolic case: δ -modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)

2) Show that the constructed δ -invariants generate all δ -invariants

1) Construct δ -invariants

Spherical case: elementary

Flat case: δ -characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

Hyperbolic case: δ -modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)

2) Show that the constructed δ -invariants generate all δ -invariants

All cases: use arithmetic analogues of Lie-Cartan prolongations of vector fields (Barcau, Compositio 02, B-Zimmerman, Crelle 05)

1) Construct δ -invariants

Spherical case: elementary

Flat case: δ -characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

Hyperbolic case: δ -modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)

2) Show that the constructed δ -invariants generate all δ -invariants

All cases: use arithmetic analogues of Lie-Cartan prolongations of vector fields (Barcau, Compositio 02, B-Zimmerman, Crelle 05)

3) Converse results

1) Construct δ -invariants

Spherical case: elementary

Flat case: δ -characters (B-, Inventiones 95, B-Zimmerman, Crelle 05)

Hyperbolic case: δ -modular forms (B-, Crelle 00, Barcau, Compositio 02, B-, Compositio 03, 04)

2) Show that the constructed δ -invariants generate all δ -invariants

All cases: use arithmetic analogues of Lie-Cartan prolongations of vector fields (Barcau, Compositio 02, B-Zimmerman, Crelle 05)

3) Converse results

Flat case: study dynamical systems with invariant tensor differential forms mod p (B-, IRMN 05)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Theorem

Theorem

E/R elliptic curve. There exists a δ -function $\psi : E(R) \to R$, $ord(\psi) = 2$, ψ group homomorphism.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Theorem

E/R elliptic curve. There exists a δ -function $\psi : E(R) \to R$, $ord(\psi) = 2$, ψ group homomorphism.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Remarks

Theorem

E/R elliptic curve. There exists a δ -function $\psi : E(R) \to R$, $ord(\psi) = 2$, ψ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \to K$ for E/K elliptic curve over a function field K

Theorem

E/R elliptic curve. There exists a δ -function $\psi : E(R) \to R$, $ord(\psi) = 2$, ψ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \to K$ for E/K elliptic curve over a function field K

2) ψ^2 descends to a δ -function on $(E \setminus E[2]) / \langle [-1] \rangle = \mathbb{P}^1 \setminus \{4 \text{ points} \}$

Theorem

E/R elliptic curve. There exists a δ -function $\psi : E(R) \to R$, $ord(\psi) = 2$, ψ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \to K$ for E/K elliptic curve over a function field K

(日) (日) (日) (日) (日) (日) (日) (日)

2) ψ^2 descends to a δ -function on $(E \setminus E[2])/\langle [-1] \rangle = \mathbb{P}^1 \setminus \{4 \text{ points} \}$

which is an invariant for Lattès dynamical system $\mathbb{P}^1 \to \mathbb{P}^1$

Theorem

E/R elliptic curve. There exists a δ -function $\psi : E(R) \to R$, $ord(\psi) = 2$, ψ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \to K$ for E/K elliptic curve over a function field K

2) ψ^2 descends to a δ -function on $(E \setminus E[2])/\langle [-1] \rangle = \mathbb{P}^1 \setminus \{4 \text{ points} \}$

which is an invariant for Lattès dynamical system $\mathbb{P}^1 \to \mathbb{P}^1$

induced by $[n]: E \rightarrow E$:

Theorem

E/R elliptic curve. There exists a δ -function $\psi : E(R) \to R$, $ord(\psi) = 2$, ψ group homomorphism.

Remarks

1) ψ an arithmetic analogue of the Manin map $E(K) \to K$ for E/K elliptic curve over a function field K

2) ψ^2 descends to a δ -function on $(E \setminus E[2])/\langle [-1] \rangle = \mathbb{P}^1 \setminus \{4 \text{ points} \}$

which is an invariant for Lattès dynamical system $\mathbb{P}^1 \to \mathbb{P}^1$

induced by $[n]: E \rightarrow E$:

$$\psi^2(nP) = n^2\psi(P), \psi^2(-P) = \psi^2(P)$$



$\delta\text{-modular}$ forms

 $X \subset X_1(N)$, N > 4, X affine, disjoint from cusps and supersingular locus

$\delta\text{-modular}$ forms

 $X \subset X_1(N)$, N > 4, X affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose m-power has sections modular forms of weight m

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\delta\text{-modular}$ forms

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus *L* line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on *X* minos zero section

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n*

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$:

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on *X* minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \lambda \in R^{\times}$.

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \lambda \in \mathbb{R}^{\times}.$ $M^n \to R((q))[q', ..., q^{(n)}]^* \delta$ -Fourier map

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \lambda \in \mathbb{R}^{\times}.$ $M^n \to R((q))[q', ..., q^{(n)}]^* \delta$ -Fourier map (not injective but injective on each $M^n(w)$)

(not injective but injective on each $M^n(w)$)

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on *X* minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \lambda \in R^{\times}.$ $M^n \to R((q))[q', ..., q^{(n)}]^{\wedge} \delta$ -Fourier map (not injective but injective on each $M^n(w)$) $M^{\infty} = | | M^n, R((q))^{\infty} = | | R((q))[q', ..., q^{(n)}]^{\wedge}$

The generators

The generators

<□ > < @ > < E > < E > E のQ @

Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

1. There exists $f^1 \in M^1(-1-\phi)$ with δ -Fourier expansion $\frac{1}{p}\log\left(1+p\frac{q'}{q^p}\right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

- 1. There exists $f^1 \in M^1(-1-\phi)$ with δ -Fourier expansion $\frac{1}{p}\log\left(1+p\frac{q'}{q^p}\right)$
- 2. There exists $f^{\partial} \in M^1(\phi 1)$ with δ -Fourier expansion 1

Theorem

- 1. There exists $f^1 \in M^1(-1-\phi)$ with δ -Fourier expansion $\frac{1}{p}\log\left(1+p\frac{q'}{q^p}\right)$
- 2. There exists $f^{\partial} \in M^1(\phi 1)$ with δ -Fourier expansion 1
- 3. f^1 and f^{∂} " δ -generate" $R_{\delta}(X, K^{-1})^{\text{Hecke}}$.

Theorem

- 1. There exists $f^1 \in M^1(-1-\phi)$ with δ -Fourier expansion $\frac{1}{p}\log\left(1+p\frac{q'}{q^p}\right)$
- 2. There exists $f^{\partial} \in M^1(\phi 1)$ with δ -Fourier expansion 1
- 3. f^1 and f^{∂} " δ -generate" $R_{\delta}(X, K^{-1})^{\text{Hecke}}$.
- 4. $f^{\partial} 1$ " δ -generates" $Ker(M^{\infty} \rightarrow R((q))^{\infty})$ (B-, Saha JNT 2012)

Theorem

- 1. There exists $f^1 \in M^1(-1-\phi)$ with δ -Fourier expansion $\frac{1}{p}\log\left(1+p\frac{q'}{q^p}\right)$
- 2. There exists $f^{\partial} \in M^1(\phi 1)$ with δ -Fourier expansion 1
- 3. f^1 and f^{∂} " δ -generate" $R_{\delta}(X, K^{-1})^{\text{Hecke}}$.
- 4. $f^{\partial} 1$ " δ -generates" $Ker(M^{\infty} \rightarrow R((q))^{\infty})$ (B-, Saha JNT 2012)
- 4. f^1 and $f^\partial 1$ " δ -generate" $Ker(M^{\infty} \rightarrow R((q))^{\hat{}})$ (B-, Saha JNT 2012)

Rings of invariant functions for (X, σ) identified with rings of functions on X/σ

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Rings of invariant functions for (X, σ) identified with rings of functions on X/σ

A different approach to quotients: groupoid strategy. Comes in 2 flavors: 1) Grothendieck's descent and 2) Connes' NC-geometry. Rings of functions on X/σ replaced by 1) descent data or 2) convolution rings

Rings of invariant functions for (X, σ) identified with rings of functions on X/σ

A different approach to quotients: groupoid strategy. Comes in 2 flavors: 1) Grothendieck's descent and 2) Connes' NC-geometry. Rings of functions on X/σ replaced by 1) descent data or 2) convolution rings

Grothendieck descent not strong enough to deal with correspondences that have dense orbits but Connes' NC-geometry strong enough to deal with some cases

Comparison between δ -geometry and *NC*-geometry

	δ -geometry	NC- geometry
spherical	$\frac{\mathbb{P}^1(R)}{SL_2(\mathbb{Z}_p)}$	$\frac{\mathbb{P}^1(\mathbb{R})}{\mathit{SL}_2(\mathbb{Z})} = NC\text{-modular}$ curve
flat	$\frac{E(R)}{\langle \gamma_i \rangle}, \frac{E(R)}{[n]}$	$rac{S^1}{\langle e^{2\pi i heta} angle} =$ NC-elliptic curve
hyperbolic	$\Gamma ackslash \mathbb{H} = Sh_{\Gamma} o rac{Sh_{\Gamma}}{ ext{Hecke}}$	$lim Sh_\Gamma = Sh^0 \subset Sh \subset Sh^{(nc)}$

<□ > < @ > < E > < E > E のQ @

Comparison between δ -geometry and NC-geometry

	δ -geometry	NC- geometry
spherical	$\frac{\mathbb{P}^1(R)}{\mathit{SL}_2(\mathbb{Z}_p)}$	$\frac{\mathbb{P}^1(\mathbb{R})}{\mathit{SL}_2(\mathbb{Z})} = NC\text{-modular}$ curve
flat	$\frac{E(R)}{\langle \gamma_i \rangle}, \frac{E(R)}{[n]}$	$rac{S^1}{\langle e^{2\pi i heta} angle} =$ NC-elliptic curve
hyperbolic	$\Gamma ackslash \mathbb{H} = Sh_{\Gamma} o rac{Sh_{\Gamma}}{Hecke}$	$lim Sh_\Gamma = Sh^0 \subset Sh \subset Sh^{(nc)}$

The 2 geometries are very different but they apply to similar situations

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem (Poonen+B-, Compositio 2009)

Theorem (Poonen+B-, Compositio 2009)

 $\Phi: X = X_1(N) \rightarrow A$ modular parametrization, A elliptic curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Poonen+B-, Compositio 2009)

- $\Phi: X = X_1(N) \rightarrow A$ modular parametrization, A elliptic curve
- p >> 0 "good" prime

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Poonen+B-, Compositio 2009)

- $\Phi: X = X_1(N) \rightarrow A$ modular parametrization, A elliptic curve
- p >> 0 "good" prime
- $Q \in X(R)$ an ordinary point.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Theorem (Poonen+B-, Compositio 2009)

 $\Phi: X = X_1(N) \rightarrow A$ modular parametrization, A elliptic curve

p >> 0 "good" prime

 $Q \in X(R)$ an ordinary point.

S set of primes inert in imaginary quadratic field of Q

Theorem (Poonen+B-, Compositio 2009)

 $\Phi: X = X_1(N) \rightarrow A$ modular parametrization, A elliptic curve

p >> 0 "good" prime

 $Q \in X(R)$ an ordinary point.

S set of primes inert in imaginary quadratic field of Q

C the S-isogeny class of Q in X(R)

Theorem (Poonen+B-, Compositio 2009)

 $\Phi: X = X_1(N) \rightarrow A$ modular parametrization, A elliptic curve

p >> 0 "good" prime

 $Q \in X(R)$ an ordinary point.

S set of primes inert in imaginary quadratic field of Q

C the S-isogeny class of Q in X(R)

Then there exists a constant *c* such that for any subgroup $\Gamma \leq A(R)$ with $r := rank(\Gamma) < \infty$ the set $\Phi(C) \cap \Gamma$ is finite of cardinality at most cp^r .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Theorem (Poonen+B-, Compositio 2009)

 $\Phi: X = X_1(N) \rightarrow A$ modular parametrization, A elliptic curve

p >> 0 "good" prime

 $Q \in X(R)$ an ordinary point.

S set of primes inert in imaginary quadratic field of Q

C the S-isogeny class of Q in X(R)

Then there exists a constant *c* such that for any subgroup $\Gamma \leq A(R)$ with $r := rank(\Gamma) < \infty$ the set $\Phi(C) \cap \Gamma$ is finite of cardinality at most cp^r .

Similar results for Heegner points (C replaced by CL)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

Consider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume $\Gamma = A(R)_{tors}$ and C replaced by CLConsider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2 $f^{\flat} : X(R) \subset X_1(N)(R) \to R$, $f^1|f^{\flat}$, $f^{\flat}(CL) = 0$, order 1

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

Consider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2

 $f^{\flat}: X(R) \subset X_1(N)(R)
ightarrow R, \quad f^1|f^{\flat}, \quad f^{\flat}(CL) = 0, \quad \text{ order } 1$

Any $P \in X(R) \cap \Phi(CL) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

Consider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2

 $f^{\flat}: X(R) \subset X_1(N)(R)
ightarrow R, \quad f^1|f^{\flat}, \quad f^{\flat}(CL) = 0, \quad \text{ order } 1$

Any $P \in X(R) \cap \Phi(CL) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

 $\begin{cases} f^{\sharp}(P) = 0\\ f^{\flat}(P) = 0 \end{cases}$

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

Consider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2

 $f^{\flat}: X(R) \subset X_1(N)(R)
ightarrow R, \quad f^1|f^{\flat}, \quad f^{\flat}(CL) = 0, \quad \text{ order } 1$

Any $P \in X(R) \cap \Phi(CL) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

 $\begin{cases} f^{\sharp}(P) = 0\\ f^{\flat}(P) = 0 \end{cases}$

Intuitively

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

Consider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2

 $f^{\flat}: X(R) \subset X_1(N)(R)
ightarrow R, \quad f^1|f^{\flat}, \quad f^{\flat}(CL) = 0, \quad \text{ order } 1$

Any $P \in X(R) \cap \Phi(CL) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$\begin{cases} f^{\sharp}(P) = 0\\ f^{\flat}(P) = 0 \end{cases}$$

Intuitively

$$\begin{cases} f^{\sharp}(x, x', x'') = 0\\ f^{\flat}(x, x') = 0 \end{cases}$$

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

Consider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2

 $f^{\flat}: X(R) \subset X_1(N)(R)
ightarrow R, \quad f^1|f^{\flat}, \quad f^{\flat}(CL) = 0, \quad \text{ order } 1$

Any $P \in X(R) \cap \Phi(CL) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$egin{cases} f^{\sharp}(P) = 0 \ f^{\flat}(P) = 0 \end{cases}$$

Intuitively

$$\begin{cases} f^{\sharp}(x, x', x'') = 0\\ f^{\flat}(x, x') = 0 \end{cases}$$

"Eliminate" x', x'' and get $f^0(x) = 0$ of "order 0"

Assume $\Gamma = A(R)_{tors}$ and C replaced by CL

Consider $f^{\sharp} = \psi \circ \Phi : X_1(N)(R) \to A(R) \to R$ order 2

 $f^{\flat}: X(R) \subset X_1(N)(R)
ightarrow R, \quad f^1|f^{\flat}, \quad f^{\flat}(CL) = 0, \quad \text{ order } 1$

Any $P \in X(R) \cap \Phi(CL) \cap \Gamma$ satisfies the system of "differential equations of order ≤ 2 in 1 unknown"

$$egin{cases} f^{\sharp}(P) = 0 \ f^{\flat}(P) = 0 \end{cases}$$

Intuitively

$$\begin{cases} f^{\sharp}(x, x', x'') = 0\\ f^{\flat}(x, x') = 0 \end{cases}$$

"Eliminate" x', x'' and get $f^0(x) = 0$ of "order 0"

Finitely many solutions (by Krasner's theorem) plus bound